氢气作为一种清洁能源载体,可以减少各个行业对化石燃料的依赖,从而显著帮助实现脱碳目标。在运输行业,氢燃料电池以水蒸气作为唯一的副产品为车辆提供动力,使其成为轻型和重型运输车辆的理想选择。钢铁生产和化学制造等工业流程可以通过使用绿色氢气来降低碳足迹。
此外,氢气可用于为建筑物供暖和发电,为传统方法提供了一种低碳替代方案。通过在这些领域应用氢能,我们可以减少碳排放,并支持向可持续、低碳未来过渡。
Explore
了解氢催化剂
氢催化剂是提高氢气生产、储存和利用效率的重要材料,在向可持续能源经济过渡方面发挥着至关重要的作用。氢催化剂可用于各种工艺,例如使用电解(使用铂和氧化铱)、光催化(使用二氧化钛)和蒸汽重整(使用镍基催化剂)等工艺生产氢气。
在燃料电池中,铂和镍催化剂促进电化学反应,从氢气中产生电能,而储存催化剂有助于在金属氢化物等材料中有效吸收和解吸氢气。此外,氢催化剂是氨生产和加氢裂化等工业流程不可或缺的一部分,有助于实现更清洁的能源和创新工业应用。
可持续的氢经济
氢经济的关键组成部分包括:
- 制氢
- 蒸汽甲烷重整 (SMR) 是一种传统的制氢方法,通过甲烷氧化反应生成氢气和二氧化碳来制取氢气。还有一种更清洁的氢气生产方式是通过电解槽,电解槽利用电力将水分解成氢气和氧气。如果电力来自太阳能和风能等可再生能源,那么它就被称为“绿色氢”。
- 储氢
- 氢气可以通过压缩或液化方式储存。或者,它也可以作为金属氢化物进行化学储存。
- 使用氢
- 氢气可用于发电,可以燃烧产生热量,也可以用作还原剂从氧化物中生产金属。燃料电池(通常用于氢电动汽车)通过氧化氢来产生电力。
燃料电池和电解槽的生产

氢催化剂的粒度测定解决方案

催化油墨采用复杂的配方,其中含有负载在碳黑上的 Pt 催化剂,该催化剂由 Nafion 离聚物与一系列颗粒及其聚集体结合,如右图所示。
表征这一点需要采用一系列不同的粒度测定技术。我们采用X射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 技术来表征不同粒度范围内的颗粒。
图片:催化油墨配方中的颗粒示意图。
了解我们的 Pt 催化剂分析解决方案

碳黑
可以使用我们的动态光散射系统 Zetasizer 纳米粒度仪来确定催化油墨中碳黑的尺寸。
我们获得专利的非侵入背散射 (NIBS) 技术可以根据样品表征(如不透明度和浓度)自动改变光程。因此,可以测量高浓度、不透明的浆料(如催化油墨),从而在一定浓度和粒度范围内提供准确的颗粒粒度,同时保持一致的结果。
此外,Zetasizer 可以测量 zeta 电位或粒子上的电荷。高带电颗粒将保持分散,而低带电颗粒往往会聚集。
图片:使用 Zetasizer Pro 的 NIBS 技术对催化剂墨水进行 6 次重复 DLS 测量,结果显示分散碳颗粒的平均粒度为 210nm。

Mastersizer 3000+激光粒度仪 提供了另一种测量碳颗粒粒度的方法,特别是当样品中存在大于 1 μm 的团聚物时。
Mastersizer 3000+ 采用激光衍射技术,因其高精度、可重复性和可靠性而被视为粒度测定的行业基准。
图片:使用 Mastersizer 3000 激光衍射粒度仪从 Pt/C 催化粉末样品中测量的颗粒粒度,其中样品中在 Vulcan XC-72 碳黑载体颗粒上具有三种不同的 Pt 负载水平(分别是 20%、40%、60%)。
了解我们的碳黑分析解决方案
氢催化剂的元素成分解决方案

了解我们的元素成分解决方案
在线元素成分分析

Epsilon Xline
在线控制,用于连续的卷对卷工艺
Epsilon Xline 是研究催化剂涂层膜中元素成分均质性的卓越解决方案。
该工具将我们先进的 Epsilon 4 技术与在线功能相结合,为超声波喷涂和卷对卷涂层工艺提供实时材料监测和最新工艺控制。这种定期分析意味着材料成分和负载不断优化,有助于最大限度地减少不合格生产并最大限度地提高成本效率。
除了精准的工艺控制外,Epsilon Xline 还能适应各种表面和催化材料。
Renewable and low-carbon Hydrogen
Renewable and low-carbon Hydrogen to contribute over 20% of global carbon abatement by 2050.
Micromeritics products will play a key role in the development of adsorbents, membranes, and catalysts, which are critical for technology development. Our instruments provide world-leading technology for the characterization of particles, powders, and porous materials.
Surface Area Surface area by gas adsorption, including BET surface area analysis. |
Porosity Pore size, volume, and distribution by gas adsorption and mercury porosimetry. |
Density Absolute density of solids, powders, and slurries by gas pycnometry. Automated envelope density of irregular solids and compressed bulk density (T.A.P). |
Powder Flow Shear and dynamic measurements of powder rheology and particle interactions. |
Activity Catalyst activity, including chemisorption, temperature-programmed reactions, and lab-scale reactor systems. |
Hydrogen will play a key role in decarbonization as it supports 60% of the applications with greenhouse gas (GHG) emissions. |
Adsorbents, membranes, and catalysts
- Optimize adsorption/desorption cycle to increase productivity and reduce cost
- Determine the CO2 that can be adsorbed
- Maximize activity and lifetime of the catalyst
- Measure membrane pore size to optimize transport and reactivity
Applications:
- Steam reforming
- Biomass
- Green electrolysis
Adsorbents and catalysts
- Develop materials with high H2 adsorption
- Determine critical parameters to scale adsorbents
- Understand the efficiency and lifetime of catalysts
- Maximize catalytic activity
Applications:
- Storage: MOFs, Zeolites, Carbon
- Synthesis CH3OH, NH3, HCOOH
- Hydrogenation LOHC, metal hydrides
Adsorbents, membranes, and catalysts
- Optimize pore size of fuel cell membranes
- Use chemisorption to determine the catalyst active area
- Adsorb/Desorb cycle optimization to minimize costs
- Study fuel cell efficiencies
Applications:
- Fuel cells
- Ammonia, fertilizer, fuel
- Chemical processes
Micromeritics offers the most comprehensive portfolio of high-performance instruments to characterize the materials required to achieve a more sustainable future.
Find out how each product can advance your catalyst, adsorbent and membrane development and analysis:
Catalyst instruments
- AutoChem III
Utilizes dynamic techniques to characterize the materials active sites
- Optimize adsorption and dissociation of H2/O2 on electrolysis electrodes
- Understand if desorption occurs near reaction conditions
- Measure and quantify acid or base sites to optimize reactivity and selectivity
- 3Flex
Offers physisorption and static/dynamic chemisorption for characterizing catalysts and their supports
- Understand multi-metal catalysts’ effects on activation and adsorption of active species
- Select catalysts providing a higher turnover frequency
- Investigate influence of heat of adsorption
- ICCS Catalyst Characterization
Provides in-situ characterization to understand the effect of reaction conditions on the catalyst
- Understand changes in performance over extended periods
- Determine the deactivation mechanism to maximize the catalysts’ lifetime
- Monitor changes in active sites, oxidative state, metal dispersion, and desorption behavior
- Flow Reactor (FR)
Benchtop reactor studies to understand and optimize catalyst performance
- Understand reaction kinetics to optimize operating parameters and conversion
- Measure selectivity, efficiency, and lifetime of catalysts
- Study of reactions requiring a liquid/gas separator at pressure and temperature
Solutions for catalyst development
Adsorbent and membrane instruments
- 3Flex
High-performance adsorption analyzer for measuring surface area, pore size and volume
- Understand adsorbent regeneration cost and best operating parameters
- Optimize pore size to maximize the uptake capacity of the adsorbent
- Predict the selectivity of a gas mixture using Ideal Adsorption Solution Theory (IAST)
- BreakThrough Analyzer
Precise characterization of adsorbent or membrane under process-relevant conditions
- Lifetime and cycling studies to choose the best adsorbent technology
- Measure kinetic performance of adsorbents
- Understand humidity effects for CO2/N2 competitive adsorption
- AutoPore V
Mercury porosimetry analysis permits detailed porous material characterization
- Characterize pore size to understand diffusion into adsorption sites
- Study and optimize pore size distribution, total pore volume, percent porosity, particle size, and total surface area
- Ensure a reproducible adsorbent manufacturing process
- HPVA II
Static volumetric method to obtain high-pressure adsorption and desorption isotherms
- Investigate the quantity of H2 or CO2 adsorbed
- Increase productivity and reduce cost by optimizing the adsorption/ desorption cycle
- Study candidate materials and CO2 storage sites
Solutions for adsorbent and membrane development
了解有关氢催化剂分析的更多信息
