Predicting the Concentration and Specific Gravity of Biodiesel-Diesel Blends Using Near Infrared Spectroscopy

Biodiesel made from different source materials usually have different physical and chemical properties and the concentration of biodiesel in biodiesel-diesel blends varies from pump to pump and from user to user; all these factors have significant effects on performance and efficiency of engines fueled with biodiesel. To address these challenges, regressions based on near-infrared spectroscopy were developed for relatively inexpensive and rapid on-line measurement of the concentration and specific gravity of biodiesel-diesel blends. Methyl esters of five different oils — soybean oil, canola oil, palm oil, waste cooling oil, and coconut oil — and two different brands of commercial-grade No. 2 on-highway diesel and one brand of off-road No. 2 diesel were used in the calibration and validation processes. The predicted concentration and specific gravity of the biodiesel-diesel blends were compared with the actual values. The maximum and average root-mean-square errors of prediction (RMSEP) of biodiesel concentration were 5.2% and 2.9%, respectively, from the biodiesel type-specific regression. For the general regression, the RMSEP were 3.2% and 0.002 for biodiesel concentration and specific gravity predictions, respectively.

登录

还没有注册? 创建账户