

Advance microcalorimetry beyond Kd and Tm

Natalia Markova, PhD

ANALYTICAL STRATEGIES FOR NOVEL THERAPEUTIC MODALITIES Virtual Workshop - 22nd November 2021 Unrestricted Document

Differential Scanning Calorimetry, DSC offers universal thermal stability assay DSC reports on conformational and colloidal instability and can inform on chemical instability too!

- Heat as universal readout directly related to protein unfolding event
- No optical artifacts, works in turbid solutions
- Work in most of buffers and in biofluids
- Study protein samples as they are
- Minimum assay development
- Inform on stabilization of individual domains
- Deliver multiple descriptors of protein stability
- Fingerprint thermal stability for biosimilarity and comparability studies

(I) Structural changes caused by conformational instability of protein native state.

(II) Propensity of a protein to form intermolecular bonds, assembly.

Adopted from Uchiyama, S. (2014) Biochim Biophys Acta. 1844, 2041

Unrestricted Document

DSC basics. Analysis of *irreversible* thermal protein unfolding

Protein stability on domain level (monoclonal antibody)

- Shifts in Tm values (°C):
 - Higher temperature = more stable
 - Lower temperature = less stable
- Shifts in Tonset values (°C):
 - Higher temperature = more stable
 - Lower temperature = less stable
- Lowering of " Δ H", area under the curve:
 - · decrease in the content of folded protein
- Changes in T_{1/2} values (transition width,°C):
 - Smaller width = more cooperative unfolding usually associated with a compact structure
 - Larger width less cooperative usually associated with a relaxed, partially unfolded structure
- Scan rate dependence of unfolding transitions
 - DSC can be used to study kinetic aspect of protein stability, *E*_{act}

Unrestricted Document

Different T_m at different protein concentrations indicative of protein oligomerization/ aggregation propensity Self-interaction propensity probed at a series of proteins concentrations

0.05; 0.5 and 2 mg/ml NISTmAb

Tm may shift with increase of sample concentration✓ Monomer Tm is concentration independent

Unrestricted Document

Different T_m at different protein concentrations indicative of protein oligomerization/ aggregation propensity Self-interaction propensity probed at a series of proteins concentrations

© 2019 Malvern Panalytical

Malvern

Unrestricted Document

Different T_m at different protein concentrations indicative of protein oligomerization/ aggregation propensity Self-interaction propensity probed at a series of proteins concentrations

Tm may shift with sample concentration.✓ Reversible oligomers give positive Tm shifts

Malvern

Panalytical

Rationalizing effect of excipients. T_ms do not tell the whole story. Do look at multiple stability metrics

"No effect of Tween 20 on IgG detected by DSC"

Malvern

Panalytical

Tween 20 affects cooperativity of mAb unfolding based on multiple stability metrics obtained with DSC

Adopted from Hoffman et al. Eur. Biophys. J. (2009) 38: 557-568 Unrestricted Document

<u>Tm, $T_{1/2}$ and T_{onset} </u>. Multiple metrics of protein thermal stability make pre/formulation funnel more efficient.

Malvern

Panalytical

Unrestricted Document

 $\Delta H_{cal} / \Delta H_{vH}$ ratio as indicator of unfolding mechanism.

- $\Delta H_{vH} = \Delta H_{cal}$ cooperative unit and molecular weight are the same: largely **reversible unfolding of one single domain**
- $\Delta H_{vH} < \Delta H_{cal}$ cooperative unit is smaller than molecular weight: intermediates
- $\Delta H_{vH} > \Delta H_{cal}$ cooperative unit is bigger than the molecular weight: **oligomers** or overestimated concentration of folded protein

pН	<i>T</i> _m (°C) ^a	$\Delta H_{\rm v}$ (kJ/mol) ^a	$\Delta H_{ m cal}$ (kJ/mol) ^a	$\Delta H_{\rm v} {}^{\rm a}: \Delta H_{\rm cal} {}^{\rm a}$
5.5	76.7	711.3	298.9	2.380
7.0	69.2	281.8	316.6	0.8901
8.5	66.0	250.1	232.0	1.078

Steven Blake et al. Int. J. Mol. Sci. 2015, 16 © 2019 Malvern Panalytical

DSC extremely valuable and widely applicable biophysical method for therapeutic protein product development

"Determining the thermal transition temperature of a protein has great utility in comparing the relative stabilities of candidate molecules for a given product, screening formulation conditions to optimize protein stability, comparing stability for a given product before and after a manufacturing change, and for comparing a biosimilar to an innovator product.

With MicroCal VP-Capillary DSC, these types of studies can be performed with minimal hands-on work by the operator. The results obtained are by far the most reproducible of any I have seen from any analytical instrument. Incredibly, thermograms from a half dozen analyses of a given sample can be overlaid and one cannot see anything but a single line. Amazing!"

DSC thermogram as fingerprint of protein unfolding and stability.

HOS: DSC thermograms of a mAb before and after forced degradation. (From Malvern webinar W151022). Biosimilarity: DSC thermograms of Neupogen (innovator) compared to Zarxio (biosimilar). (Samples from J. Carpenter, U. Colorado).

Comparability: DSC thermograms of mAb reference lot compared to five other lots of same mAb. (Data from Malvern Instruments).

Best practices Need for extra rigorous cleaning

- Compared to the 1st protein scan, scans 2-6 have a lower area and Tm1 is about 0.5 higher for scan 1.
- For these samples under these conditions the shorter detergent wash was not sufficient to completely clean the PEAQ-DSC cells.

Best practices

Effect of adequate cleaning. Excellent repeatability.

 Detergent scan after every sample scan ensures adequate cleaning and results in identical sample scans

13 Title of the presentation

^{Unrestricted D}DSC for monitoring HOS changes or deterioration in a biotherapeutic product Chemical instability

Unrestric

Arthur et al, J Pharm Sci, 104,1548–1554 (2015)

 DSC consistently showed enhanced sensitivity to structural changes compared to spectroscopic based methods and can be a leading indicator of biological activity changes prior to detection by potency assays.
 DSC is sensitive and reproducible to assess product quality and investigate OOS and OOT.

And more!

DSC can spot chemical reactivity, e.g. reactivity of excipients used in formulation development

PEO73_0_WP2_T_01_A1 [5] PEO73_0_WP2_T_02 A1 200 - PEO73_0_WP2_T_03_A1 [17] 150 PEO73_0_WP2_T_04_A1 Cp (kcal/mol/K) 100-PEO73 0 WP2 T 05 A [29] PEO73 0 WP2 T 06 A1 50- PEO73_0_WP2_T_07_A1 [41] 0 -50-40 50 60 70 80 90 100 Temperature (°C)

Oxidative species may be implied in the long-term oxidative degradation Antioxidants might act as pro-oxidants in metal-catalyzed oxidation Controlling metal ion contamination level in the excipients and limiting available molecular oxygen are recommended for formulation development

Case study. Stability profiling and formulation development for a fusion protein X. *In collaboration with Cobra Biologics*

Project Analytics and Development Workflow at customer site

Project results delivered by the platform technologies

Findings and open questions

STATE IN SOLUTION

SEC-uHPLC UV

What are the species eluting in the main peak?

THERMAL STABILITY

DSF

How to rank stability by complex unfolding profile when 1st transition show minimal change?

What is the significance of the second transition observed in 7 out of 10 buffers?

ACCELERATED STRESS STABILITY SEC-uHPLC UV

Can the accelerated stress stability data be rationalized in terms of intrinsic properties of Protein X? What are the species and mechanisms involved in degradation pathways of Protein X and how to affect them?

Bridging the gaps of the platform technologies

1st principle orthogonal biophysical techniques

MicroCal PEAQ-DSC 325 µl/sample at 0.5 and 5 mg/ml

- Protein X (M_W 62 kDa)
- All samples buffer exchanged and supplied with matching buffers

Zetasizer DLS 20 µl 0.6-23 mg/ml

OMNISEC 20 µl at 0.6, 12 and 23 mg/ml

Stability Profiling of Protein X

Findings and open questions

STATE IN SOLUTION

Multiple-detection SEC

Monomer species are eluting as main peak.
Dimers represent predominant oligomer fraction followed by trimers and HMWA.
Fraction of dimers increases with Protein X concentration

What is the **significance of the second transition** observed in 7 out of 10 buffers?

Project Gain with DSC

Reliable artifact-free information on thermal stability

- Thermal unfolding of Protein X appears as one peak
- T_m and $T_{1/2}$ show minimal variability with buffer conditions and Protein X concentration
- Low temperature shoulder gets pronounced with increase of Protein X concentration and T_{onset} varies with buffer conditions.

Could the shoulder reflect presence of several domains and/or an additional process preceding and partly overlapping with protein unfolding?

Project Gain with DSC and DLS

What is causing the shoulder on DSC thermogram of Protein X?

Temperature-induced dissociation of oligomers confirmed by DLS data Shoulder on DSC thermogram of Protein X may reflect oligomer dissociation preceding and overlapping with protein unfolding

22 The Value of Orthogonal Analytics

Unrestricted Document

Project Gain. Complementarity of DSC and DLS

Thermal stability beyond T_m

 T_{m1} and $T_{1/2}^{1}$ show highest sensitivity to sample conditions with variability of $\approx 3^{\circ}$ C as compared to $\approx 1^{\circ}$ C for variability in T_{m2} and T_{1/2}² DSC points to conditions with highest thermal stability at Time = 0 and after 5 freeze-thaw cycles Finding confirmed by DLS

23 The Value of Protein X @23 mg/ml after

5xFT

40 30

20

6

ШШ

Project Gain with ITC

Self-association dynamics and kinetics of Protein X

Oligomer dissociation is kinetically controlled and proceeds at different rates dependent on buffer and storage conditions.

Dilution factors, incubation time and temperature are critical to the state and stability of Protein X in solution

24 Title of the presentation

Kinetically controlled oligomerization of Protein X confirmed

Implications for analytical method development

- Protein X reference material was transferred from -70 °C to 4 °C on different days prior to analysis.
- The equilibrium was reached after 3 to 5 days at 4 °C.

Protein X dimer/trimer equilibration kinetics

25 Title of the presentation

Stability Profiling and Formulation for Protein X DSC, OMNISEC, DLS and ITC. Sum is greater than its parts!

Multiple stability metrics by DSC

- informed selection of optimal formulations
- hinted on the complexity of the thermally induced transitions

Orthogonal use of DSC, DLS, multiple-detection SEC and ITC

- gave insights into intrinsic properties and behavior of Protein X in solution
- helped to rationalize degradation upon F/T cycles
- flagged for implications to analytical method development

- Increase of temperature and dilution triggers dissociation of oligomers of Protein X.
- Dimers/trimers of Protein X are favored by low temperature and are kinetically controlled.
- Oligomerization during freeze-thaw cycle conditions leads to formation of HMW aggregates

²⁶ Title of the presentation

We are Malvern Panalytical

We're BIG on small[™]

Accelerating AAV Analysis